Reinnervation of muscular targets by nerve regeneration through guidance conduits.

نویسندگان

  • Hou-Yu Chiang
  • Hsiung-Fei Chien
  • Hsin-Hsin Shen
  • Jean-Dean Yang
  • Yu-Hua Chen
  • Jui-Hsiang Chen
  • Sung-Tsang Hsieh
چکیده

We established histopathologic and neurophysiologic approaches to examine whether different designs of polycaprolactone-engineered nerve conduits (hollow vs. laminated) could promote nerve regeneration as autologous grafts after transection of sciatic nerves. The assessments included morphometric analysis at the level of sciatic nerve, neuromuscular junction (NMJ) and gastrocnemius muscle, and nerve conduction studies on sciatic nerves. Six months after nerve grafting, the nerve fiber density in the hollow-conduit group was similar to that in the autologous-graft group; the laminated-conduit group only achieved approximately 20% of these values. The consequences of these differences were reflected in nerve growth into muscular targets; this was demonstrated by combined cholinesterase histochemistry for NMJ and immunohistochemistry for nerve fibers innervating NMJ with an axonal marker, protein gene product 9.5. Hollow conduits had similar index of NMJ innervation as autologous grafts; the values were higher than those of laminated conduits. Among the 3 groups there were same patterns of differences in the cross-sectional area of muscle fibers and amplitudes of compound muscle action potential. These results indicate that hollow conduits were as efficient as autologous grafts to facilitate nerve regeneration, and provide a multidisciplinary approach to quantitatively evaluate muscular reinnervation after nerve injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit.

Single channel conduits are used clinically in nerve repair as an alternative to the autologous nerve graft. Axons regenerating across single channel tubes, however, may disperse resulting in inappropriate target reinnervation. This dispersion may be limited by multichannel nerve conduits as they resemble the structure of nerve multiple basal lamina tubes. In this study, we investigated the inf...

متن کامل

Nerve regeneration in vascularized composite allotransplantation: current strategies and future directions

Vascularized composite allotransplantation (VCA) has emerged as a viable treatment option for limb and face reconstruction of severe tissue defects. Functional recovery after VCA requires not only effective immunosuppression, but also consideration of peripheral nerve regeneration to facilitate motor and sensory reinnervation of donor tissue. At the time of transplantation, the donor and recipi...

متن کامل

Functional repair after dorsal root rhizotomy using nerve conduits and neurotrophic molecules.

Functional recovery after large excision of dorsal roots is absent because of both the limited regeneration capacity of the transected root, and the inability of regenerating sensory fibers to traverse the dorsal root entry zone. In this study, bioresorbable guidance conduits were used to repair 6-mm dorsal root lesion gaps in rats, while neurotrophin-encoding adenoviruses were used to elicit r...

متن کامل

استفاده از کانال راهنمای عصب در ترمیم عصب محیطی

Although the nerve auto graft still remains the clinical Gold standard in repairing nerve injury gaps, many advances have been achieved to guide regenerating axons across the lesion. Functional recovery after peripheral nerve lesion is depended upon accurate regeneration of axons to their original target tissues. To increase the prospects of axonal regeneration and functional recovery, research...

متن کامل

Low-Level Laser-Accelerated Peripheral Nerve Regeneration within a Reinforced Nerve Conduit across a Large Gap of the Transected Sciatic Nerve in Rats

This study proposed a novel combination of neural regeneration techniques for the repair of damaged peripheral nerves. A biodegradable nerve conduit containing genipin-cross-linked gelatin was annexed using beta-tricalcium phosphate (TCP) ceramic particles (genipin-gelatin-TCP, GGT) to bridge the transection of a 15 mm sciatic nerve in rats. Two trigger points were irradiated transcutaneously u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 64 7  شماره 

صفحات  -

تاریخ انتشار 2005